Loss of MD1 Promotes Inflammatory and Apoptotic Atrial Remodelling in Diabetic Cardiomyopathy by Activating the TLR4/NF-κB Signalling Pathway

Subject Area: Pharmacology
Tonghuan Shi; Guangji Wang; Jianye Peng; Manhua Chen
Pharmacology (2023) 108 (4): 311–320.

Introduction: Myeloid differentiation protein 1 (MD1), a negative regulator of toll-like receptor 4 (TLR4), is widely expressed in the heart. Recent studies have shown that MD1 plays an important role in cardiac remodelling. However, the effects and potential mechanisms underlying MD1-mediated atrial remodelling in diabetic cardiomyopathy (DCM) remain unclear. Therefore, this study was designed to explore the role of MD1 in DCM-related atrial remodelling. Methods: MD1 knockout (MD1-KO) mice and wild-type (WT) littermates were injected with streptozotocin (STZ) to establish a diabetic mouse model. These mice were then used to evaluate MD1 expression and its effects on atrial remodelling in vivo. Results: MD1 expression was significantly decreased in STZ-induced diabetic mice. The loss of MD1 aggravated atrial fibrosis, inflammation, and apoptosis in DCM mice and promoted atrial remodelling. MD1-KO diabetic mice also showed higher susceptibility to atrial fibrillation (AF) and worse cardiac function. Mechanistically, the deletion of MD1 promoted the activation of the TLR4/NF-κB signalling pathway, resulting in atrial remodelling in DCM mice via increased p65 phosphorylation. Conclusions: The deletion of MD1 plays an important role in inflammatory and apoptotic atrial remodelling and increases susceptibility to AF in DCM mice, providing a new target for the preventive treatment of DCM-related atrial remodelling.