Personalized-Inherent Variability in a Time-Dependent Immune Response: A Look into the Fifth Dimension in Biology

Subject Area: Pharmacology
Dory Rotnemer-Golinkin; Yaron Ilan
Pharmacology (2022) 107 (7-8): 417–422.

Introduction: Individualized response to the immune triggers influences the course of immune-mediated diseases and the response to immunotherapies. Both inter- and intra-subject variations occur in time-dependent dynamics of biological systems. The present study aimed to establish a model for inherent personalized-time-dependent variability in response to immune triggers. Methods: Male C57BL/6 mice were administered concanavalin A (ConA) and followed every 2 h for 10 h and at 24 h for serum alanine aminotransferase (ALT) levels. Results: A marked intragroup variability was noted for both the timing of the effect of ConA, the magnitude of the increase in ALT levels, and the time to peak. While in some mice, a peak level was achieved, whereas a continuous increase in liver damage was noted in others. Four mice died at different time points during the study irrespective of their liver damage, further supporting the individualized-based response to the trigger. Conclusions: This feasibility study established a model for determining the personalized-inherent variability in a time-dependent response to the immune triggers. These results highlight the importance of considering both the time and the wide range of individualized variability in immune responses while designing personalized-based immunotherapies.