Quantification of Bisoprolol and Metoprolol in Simultaneous Human Serum and Cerebrospinal Fluid Samples

Subject Area: Pharmacology
Ali Sigaroudi; Martina Kinzig; Oliver Wahl; Christoph Stelzer; Michael Schroeter; Uwe Fuhr; Ulrike Holzgrabe; Fritz Sörgel
Pharmacology (2017) 101 (1-2): 29–34.

Background: Bisoprolol and metoprolol are moderately lipophilic, beta(1)-selective betablockers reported to cause adverse effects in the central nervous system (CNS), such as sleep disturbance, suggesting that both drugs may reach relevant concentrations in the brain. CNS beta(2)-receptor blockade has been suspected to be related to such effects. The higher molecular size of bisoprolol (325 Dalton) and the higher beta(1)-selectivity compared to metoprolol (267 Dalton) would suggest a lower rate of CNS effects. Methods: To address the pharmacokinetic background of this assumption, we quantified to which extent these beta(1)-blockers are able to enter the cerebrospinal fluid (CSF) in 9 (bisoprolol group) and 10 (metoprolol group) neurological patients who had received one of the drugs orally for therapeutic purposes prior to lumbar puncture. We quantified their total concentrations by liquid chromatography/tandem mass spectrometry in paired serum and CSF samples. Results: Median (interquartile range) in CSF reached 55% (47-64%) of total serum concentrations for bisoprolol and 43% (27-81%) for metoprolol, corresponding to 78% (67-92%) and 48% (30-91%) of respective unbound serum concentrations. Conclusion: The extent of penetration of bisoprolol and metoprolol into the CSF is similar and compatible with the assumption that both drugs may exert direct effects in the CNS.